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Lineal measures of clustering in overlapping particle systems
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The lineal-path functiomh.(z) gives the probability of finding a line segment of lengténtirely in one of the
phases of a disordered multiphase medium. We develop an exact methodology to detgizpifier the
particle phase of systems of overlapping particles, thus providing a measure of particle clustering in this
prototypical model of continuum percolation. We describe this procedure for systems of overlapping disks and
spheres with a polydispersivity of sizes and for randomly aligned equal-sized overlapping squares. We also
study the effect of polydispersivity on the range of the lineal-path function. We note that the lineal-path
function L(z) is a rigorous lower bound on the two-point cluster functi®p(z), which is not available
analytically for overlapping particle models for spatial dimengien2. By evaluating the second derivative of
L(z), we then evaluate the chord-length distribution function for the particle phase. Computer simulations that
we perform are in excellent agreement with our theoretical red#i063-651X%96)13310-9

PACS numbep): 47.55.Mh, 05.20-y, 61.20.Gy

I. INTRODUCTION , ©
|g>=f zpV(z)dz ()
The quantitative characterization of the microstructure of °
two-phase random heterogeneous media, such as suspgfithe mean chord length for phaseand ¢; is the volume
sions, composites, and porous media, is of great fundamentghction of phase, so that¢,+ ¢,=1. The chord-length
as well as practical importandd—3]. This microstructural gjstribution function is of basic importance in transport prob-
information is ascertained either theoretically or experimenigms involving “discrete free paths,” and thus has an appli-
tally (from images of the samplewith the goal of develop-  cation in Knudsen diffusion and radiative transport in porous
ing bounds or estimates on the effective transport, mechaninedia[14—18. The chord-length distribution function has
cal and electromagnetic properties of the random materialgiso heen measured for sandst¢hé], magnetic gel§11],
[1-4.6.7. ] ] and sedimentary rock§l9]. Finally, like the lineal-path
One useful way to characterize the microstructure of raNfynction, the chord-length distribution functigi”(z) is of
dom media is by means of the lineal-path functiot¥(2) great interest in stereologit2].
[8,9], schematically depicted in Fig. 1, and defined to be the” A yseful model of random media is a system of spatially

probability that a line segment with a given lengthlies  yncorrelated spherdd,20—24. This model goes by a vari-
entirely in phase. This microstructural function contains

some connectedness information, at least along a lineal path,
and hence contains certain long-range information about the
system. The lineal-path function has been obtained experi-
mentally for sandstong¢10] and magnetic gel$11]. For
three-dimensional systemk!(z) is also equivalent to the
area fraction of phasemeasured from the projected image
of a three-dimensional slice of thicknessnto a plang8], a
guantity of longstanding interest in stereoldgy?].

The lineal-path function has also been related to the
chord-length distribution functiop®(z) by Torquato and
Lu [13], which is also illustrated in Fig. 1 and is defined to
be the probability of finding a chord of length betweeand
z+dzin phasei. They showed that

19 d2L0(2)
(i) Z)= — 1
p(z) b dZ 1)
where
FIG. 1. Schematic diagram dfa) the void-phase lineal-path
i function, (b) the particle-phase lineal-path functidic) the mixed-
TElectronic address: johng@matter.princeton.edu phase lineal-path function, an@) the chord-length distribution
Corresponding author. Electronic address: function for the void phasélight lines) and particle phasédark
torquato@matter.princeton.edu lines).
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tic geometry community call8oolean modelswhich have
been extensively studied in the literaty&b,30,31.

In previous work, Lu and Torquat8,9] evaluated the
void-phase(called phase )llineal-path function.(Y)(z) for
overlapping spheres with a polydispersivity of sizes, and
found that

diexp(—pz), d=1

LW(z)=1{ ¢1ex(—2pM;2), d=2 (3)
1exp—pmMyz),  d=3,
where the spheres have number dengity
Mk:J rép(r)dr 4
0

is thekth moment of the distribution of the radii, arf{r) is
the probability density function of the radii. Under these as-
sumptions, the volume fraction of phase 1 is

pr1=e"PV1, 6)
where
’7le2
Vi di) Me ©

is the average volume of the spheresdirdimensions. We
also define

n=pVy (7)

to be the reduced density of the system, so thate 7.

The expression fot. (") in Eq. (3) can be obtained by
FIG. 2. Realizations of overlapping disks with radii lognormally usmg exclusion probabllltlgs[8,9]. One .mICI’OStI’UC'Fl:Ir.al .
distributed, described by the density function in E24). These function thgt cannot be obltalned by excluglon_probabllltles is

realizations both have reduced density: 0.75, defined in Eq(7).  the two-point cluster functio,(z) [32], which is the prob-

The upper model satisfigd= 0.2, while the lower hag=0.6. The  ability that two points both lie in the same cluster of con-
dark dots are the centers of the disks. nected particles. This probability, as we will discuss in Sec.

II, is known analytically for one-dimensional systems of
ety of names, including fully penetrable spheres, Swisspyerlapping rods of equal sif83,34, and even if the rods
cheese model, and overlapping spheres. In three dimensionge assigned random lengths, the Laplace transfor@,d$
we will simply refer to this protypical continuum-percolation known[30]. However,C, is not known analytically for over-
model as overlapping spheres. This is an interesting model iypping spheres in two or more dimensions.
three dimensions because the medium is bicontinythat In this paper we obtain the lineal-path function
is, both phases are connectedhen the particle volume frac- | (z)=[(2)(z) for the particle phase(called phase Pof sys-
tion ¢, lies in the interval 0.3,0.97. A system of overlap-  tems of overlapping particles, or the probability that a line
ping spheres is hence a useful model of consolidated medigegment of lengtiz lies entirely within the particle phase.
such as sandstones and sintered matefd5 and has also  This is a more difficult problem than obtaining the void-
been used to model ceramic metplsl] and certain grains  phase lineal-path function ®(z), which can be obtained by
[25]. Interestingly, this system has also been used to study,eans of simple exclusion probabilitiesliso, the particle-
random crystallizatiohi26], modeling of porous glass¢87],  phase lineal-path functioh(z) will capture some level of
I[i;egt]imes of porous catalyst28], and bulk polymerization jnformation about particle clustering. Clearly,

In two dimensions, the material will never be bicontinu- L(z)<C,(2), (8)
ous, but the model still captures nontrivial clustering infor-
mation, especially by allowing the particles to have a range.e., L(z) is a rigorous lower bound of€,(z). For one-
of sizes. Realizations of overlapping disks with a polydisperdimensional systems, two points are in the same cluster ex-
sivity of sizes are shown in Fig. 2. In these two realizationsactly when the line segment between them lies entirely in a
¢,=0.528, and the radii are lognormally distributed; see Eqcluster, and sd.(z) =C,(z).
(24) for the probability density function of the lognormal We propose a methodology to numerically evaluate
distribution. These models are examples of what the stocha$<{z) for any system of overlapping convex particles. We do
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this by studying the one-dimensional system formed by takintersection of the particles with this line form a one-
ing the intersection of a line placed in the model with thedimensional Boolean model. If the particles are all convex,
particles. As we will discuss in Sec. Il, the lineal-path func-then these regions are connected and we call these regions of
tion can be expressegkactlyas a coverage probability for intersection “rods.” Of course, these rods have random
this one-dimensional system. Such coverage probabilitielengths. The parameters of this one-dimensional system of
have been well studied, and we will use results from thisoverlapping rods — the distribution of lengths and the den-
theory to obtain the Laplace transform of the lineal-pathsity of the rods — can be determined from the properties of
function. Since this Laplace transform cannot be invertedhe “parent” system of overlapping particles.
analytically, we will use numerical inversion technigues to We now make an important observation: for systems of
finally obtainL(z). We do not use approximations in this overlapping convex particlgsvhich will be exclusively con-
methodology, and the numerical accuracy of this procedursidered in this papgr the probability that an interval of
is only limited by the numerical accuracy of the techniquelengthz lies completely within the particle phase is equal to
used to invert Laplace transforms. the probability that the intervdl0,z] on thex axis is com-
Our formulation can be applied to any system of overlappletely covered by the rods. In order to evaluate the lineal-
ping convex particles, and we will use it to evalubtg) for ~ path functionL(z), therefore, we will use a result from the
polydispersed overlapping disks, polydispersed overlappintheory of coverage processes.
spheres, and randomly aligned, equal-sized squares. In all of
these cases, our evaluationsldfz) are in excellent agree- B. Coverage probabilities in one dimension

ment with values obtained from computer simulations. . . . .
P Consider a stationary Poisson procé€s} on the line

In Sec. Il we describe the methodology we will use to ih density . T fruct di ional Bool
evaluate the lineal-path function, which draws on results! ensity A. To construct a one-dimensional Boolean

from cross sections of Boolean models, coverage probabilir-'nOdeL we center rods of random Iength on these points. We
ties in one dimension, and numerical techniques for invertingSSume both that these lengis are independent of each
the Laplace transforms of probability distributions. In Sec. _ther and thg centers,_aqd that the I_engths are identically
Il we use this methodology to evaluatéz) for overlapping distributed with some distribution functiodr, so that
d@sks with a polydispersivity in size, including equal-sized P(D,<x)=¥(x) (9)
disks. Using the same methodology, we evaluate) for
randomly aligned equal-sized squares in Sec. IV, and then
for polydispersed overlapping spheres in Sec. V. Finally, infor all i. Both of these conditions are true of the system of
Sec. VI we will use our results fok(z) to evaluate the intersection rods described above.
chord-length distribution functiop®(z) for the previously Stochastic geometers have studied the probability that a
mentioned models. given interval of lengtht is completely covered by these
randomly sized rods. For this one-dimensional process, this
coverage probability is equivalent to the two-point cluster
Il. DESCRIPTION OF METHODOLOGY function C,(z) and the one-dimensional particle-phase
Underlying our methodology to obtain the lineal-path lineal-path fung:tiorL(z), as dis_cusfsed in Sec. |. The Laplace
function are results from stereology, the theory of coveragdransform ofL is known, and is given by30]
processes, and the numerical inversion of Laplace trans-
forms. We first discuss cross sections of a Boolean model. . w
Roughly speaking, a Boolean model is a system constructed L(s)=f e % (z)dt
by placing shapes, randomly chosen from a set of possible
shapes, upon the points of a Poisson process. The intersec-
tion of a line and a Boolean model with convex patrticles is a o
one-dimensional Boolean model containing rods of random =s_1—(sze‘“‘f exr{ —sz
lengths. We then discuss the coverage probability for such 0
one-dimensional systems of polydispersed rods. As dis- ,
cussed in Sec. |, the lineal-path function is essentially this —)\J {1-¥(x)}dx
probability, and its Laplace transform is known. However, 0
this Laplace transform cannot be inverted analytically in
general. To overcome this obstacle, we finally discuss meths-
ods that numerically invert Laplace transforms of probability
distribution functions.

0

-1
dz) , (10

here

a=f [1-P(x)]dx (11
A. Cross sections of Boolean models 0

Many theoretical results of Boolean models have been
obtained[30,31. One important property is that cross sec-is the mean length of the rods.
tions of a Boolean model are lower-dimensional Boolean In principle, one can invert Eq10), and therefore obtain
models. For example, consider a line that placed inside the coverage probability. For example, if the rods all have
system of overlapping patrticles; without loss of generality,common lengthD, and the interval distance satisfies
the line can be taken to be theaxis. Then the regions of (m—1)D<z=mD for integralm, then[30,33
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m [p(u—k+1)] 2 perform similar derivations of (z) in the next two sections
L(uy=1+>, (- 1)ke"”( D)1 for other systems of overlapping particles.
k=1 —4):
[n(u—k+1)]¢ A. Disks with a polydispersivity in size
+—), 12 . .

k! 1. Parameters of the intersection rods
whereu=z/D is dimensionless distance, and We now mathematically model a system of overlapping
disks with a polydispersivity of sizes. We assume that the
n=AD (13 centers of the disksX;,Y;) are generated by a Poisson pro-

cess in the plane with known densipy and that the radii
is the reduced density of the system. Expresgib?) was R; are independently determined by some distribution func-
independently obtained byi@ar and Torquatd34] using tion ®, so that
renewal theory.

If the rods have a nontrivial distribution of lengths, how- _ T
ever, L(z) unfortunately cannot be analytically obtained P(Rigr)—CD(r)—fo $(t)dt (14
from L(s) in general. Therefore, we must use numerical _ _ _
techniques to obtain the lineal-path function. for all i. Then the triplets X;,Y;,R,) form a nonstationary
Poisson process with mean measure
C. Numerical inversion of Laplace transforms w(dx,dy,dr)=pdxdye(r)dr. (15)

We will use two different short algorithms discovered by
Abate and Whitt, using the Fourier-series meti88,36, Clearly theY; give the distance of the centers from tke
which numerically calculates any functidrfrom its Laplace axis. _ _
transformf. The only conditions that must be met for these, W€ now consider the rods which are generated by the
algorithms to work are thaf(z)|<1 and thatf(s) can be intersection of the disks with theaxis. The pairsC; ,_Di) of
evaluated at any poirstin the complex plangThese authors the centers and |_9ngths Of the rods are detern_qmed by the
have also developed numerical techniques for invertind?0Sitions and radii of the disks through the relation
Laplace transforms of other functiof35]). In our casel. is (X 2JR—Y?), |Yi|<R
a cumulative probability function, and, since we have an (C, -Di):[ " b He (16)
explicit formula for its transform via Eq10) and the distri- (0,0) otherwise.
bution function ¥, therefore we can use their numerical
methods to invert.. _By J we mean a polint off of the Iinéthe. “point at infin-
These algorithms unfortunately do not have simple genl): since a disk with{Y;|>R; does not intersect the line.
eral error bounds. To ensure numerical accuracy, Abate and FTom this relation, we see that the centers of these rods
Whitt suggest that the two methods be used separately arl@rm a stationary Poisson process with mean
checked for agreement within desired precision. In our case, w rr
we have a third method of checking the computation of the )\=pJ' J dyo(r)dr=2pMy, (17)
lineal-path function, namely, direct Monte Carlo simulation. 0 J-r

To ensure that these algorithms converge, they recommend

that double precision floating-point numbers should be used?"€reMx is the uncentralizeth moment of the distribution
Unfortunately, expressiofil0) contains two levels of inte- & defined by Eq(4). Also, the probability that a given rod

gration, and therefore numerically evaluatihgs) to that has length greater thanis

degree of precision is extremely computationally intensive. 1-W(x)= P(|y|<m r>x/2|r>y|)
From our experience, evaluatings) to 10 or 11 decimal '
places will produce values &f(z) accurate to roughly three 1 (g
or four decimal places. "M —1%4g(r)dr. (18)
lll. EVALUATION OF THE LINEAL-PATH FUNCTION: Therefore, using Eq11), the mean length of the rods on the
DISKS line is

We now employ the methodology described in Sec. Il to 7™,

evaluate the particle-phase lineal-path function of systems of a= (19

. i . > Y S 2My
overlapping convex particles. We begin by considering over-
lapping disks with a polydispersivity of sizes. We use the  pyom this analysis, we notice
ideas of stereology to determine both the densitpf the
intersection rods along the axis and the distributiont of aN=paM,=7, (20)
the lengths of the rods. Using this information, we calculate
the Laplace transform of the lineal-path function using Eq.where % is the reduced density of the disks from E@).
(10). Finally, the techniques of Abate and Whitt are em-This result is expected, since the probability that a point on
ployed to obtain the lineal-path function numerically. Thisthex axis lies in a rod must be equal to the probability that a
derivation is described in some detail for this model; we will point in the original two-dimensional system lies in a disk.
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0.8 : : ; ; whereR, and 8 are given parameters. For this distribution,
So —— 1=025 the uncentralizetth moments of the distribution of the radii
0.7 \\\ w1 =0.75 ! are
AN ——- =150

M= RSexp(k?%/2). (25)

We see that ag(r)— 6(r —Rg) asB—0; that is, the radii of
all the disks approaché¥,. However, the polydispersivity of
the radii increases g8 increases.

The lineal-path function is plotted in Fig. 3 at=0.25,

Lineal path function, L{u)

these reduced densities, corresponding3te0 (equivalent
to equal-sized disks, discussed belpy®@=0.25 and 0.50.
We see that as the polydispersivity increafes, asg in-

) 1 2 3 4 5 creasek the lineal-path function becomes longer-ranged. We
Dimensionless distance, u= z/M, also see that our evaluation bfis in excellent agreement
with simulation data, represented by the circles.

FIG. 3. Graphs of the particle-phase lineal-path functign),
whereu=2z/M, is the dimensionless distance. The materials con- B. Disks of equal size

sidered are overlapping disks with lognormally distributed radii at . .
reduced densitiegy=0.25, 0.75, and 1.50. Three separate models, The expression for the Laplace transformioin Eq. (21)

are plotted at each of these reduced densities, corresponding ﬁva”d for any distributiorb of the disk radii. If we assume

B=0 (equivalent to equal-sized disks8=0.25 and 0.50. A and _that the disks have equal sig® that is, if
the polydispersivity increases, the lineal-path function becomes

longer ranged. Computer simulation data are represented by the (r)= 0, r<R (26)
circles. 1, r=R,
2. Evaluation of lineal-path function then Eq.(21) is greatly simplified. Substitution into Eq&t),
We now substitute Eq$17)—(19) into Eq. (10) to obtain (7), and(17)—(19) yields
the Laplace transform df for this system. After reversing _pk
the order of integration in the exponent and some simplifi- Mi=R" forallk, 27
cation, we obtain = paR2, 28)
o -1
L(s):s—1—<s2e’7f exd —sz—2p{l1(2)+1,(2)}]dz| A=2pR, (29)
0
(21) RZ_X2/4
———, x<2R
where 1-¥(x)= R (30)
0 otherwise,
T f i d 22
1(2)=75 o ¢(r)dr @2 g
7R
and a=—. (31)

» [z\4r?—z
12(2)= lez 4—Jrr arcsi ¢(r)dr. (23)  supstituting these expressions into E2), we find that the
Laplace transform oE for overlapping equal-sized disks is

As discussed in Sec. lll A 1, cannot be inverted analyti-
cally, so instead we use the techniques of Abate and Whitt to
obtainL(t) numerically. However, evaluation &f requires  \here
two stages of integration, and so obtainingo 11 places of
precision can be quite computationally expensive, depending 2R
on the behavior ofp. |3(S)=f e *gs(z)dz (33
Graphs of the lineal-path function for overlapping disks 0
with lognormally distributed radii are shown in Fig. 3; that _ 4
is, the probability density function of the radii is given by

L(s)=s 1—[se 2Rs+s2e7 4(s)] L, (32

93(2)= exr{ - %[ Z\AR?— 22+ 4R2arcsir<%) ] }

o(r)= (34

[In(r/Ro ] 24

/N_

0.75, and 1.50. Three separate models are plotted at each of
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10 . { ( a long-ranged functiofthat is, its volume integral diverges
for densitiesy above the percolation thresholg,. [32], de-
5 e e T fined to be the density at which a cluster of infinite size
E o8} e e forms. For overlapping equal-sized diskg,~1.13[37,38|.
g T This observation is not surprising, sintéz)<C,(z), as re-
B marked in Sec. I, and so the divergent behaviorCgfz)
206 , / 7 near the percolation threshold is not necessarily reflected in
g s the behavior ol (2).
5 S5
g4yt L |
2 Yl o Tom IV. EVALUATION OF THE LINEAL-PATH FUNCTION:
g‘; Y e =090 SQUARES
go2r & ——-1n=125 1 ) .
Z Y —— =150 This three-step method of evaluatihg—stereology, cov-
erage processes, and numerical evaluation — can be used for
0o | : P p . 5 other systems of overlapping convex particles. We now con-

sider overlapping squares of densjiyof equal side length
D but random alignment, so that the reduced density of this
model is

Dimensionless distance, u=z/R

FIG. 4. Graphs of the mixed-phase lineal-path function for over-
lapping equal-sized disk&™(u) is a decreasing function in for — D2 37)
all », and is maximized for all at »™~0.90. =P
We see that., for this system, contains only a single inte- We now use the same procedure as above to ohtant we
gral, and so the evaluation and numerical inversioh can  Only summarize the steps of this evaluation.
be done much more quickly and accurately than the polydis- TO begin, we again consider the intersection rods of the
persed case. squares with thex axis; as before, this is a system of over-

Graphs of the lineal-path function for equal-sized sphere$apping rods with random lengths. We again must calculate
are shown in Fig. 3 for the cagg=0. As we see, theory and the density of the rods and the distribution of their lengths,

simulation are in excellent agreement.
From the void-phase lineal-path functiari')(z), given

but these calculations for squares require considerably more
effort than the disk case. We find that

by Eg. (3), and the particle-phase lineal-path function

L(z2)=L®@)(z), we can easily obtain the mixed-phase lineal-

path function, given by

LM(z)=1-LY(2)-L?(2), (35)

and defined to be the probability that a line segment of length

z crosses phases at least once over its length. In Fig. 4 we
plot L(M(z) for equal-sized disks at various reduced densi-

ties. We notice thalt (™(z) is an increasing function of, as

expected, since the probability of a line crossing phases at
least once increases as the length of the line increases. We

also see thatL(M(z) is maximized in 5 for all z at
7™=~0.9.

We also notice from Eq32) that the lineal-path function
is a “short-ranged” function at all densities, in the sense
that thevolumeintegral of the lineal path function is finite.
To show this, we notice that

f %dz= f:zL(z)dz

=-L'(0)
2R 2
=2R%+e?7 gg(z)dz)
0
2R 2R
+e’7J Zgx(z)dz—4e"R | g3(z)dz
0 0
(36)

which clearly is finite sinceégs(z)|<1 for 0<z<2R from
Eq. (34). By contrast, the two-point cluster functi@y(z) is

4pD

)\:L (39
ar
and

1 X <D

20 S
1—W(x)={ x?°—2Dx?—D? 39
(x) T, D$X§D\/§ 39

0 otherwise,

so that, from Eq(11),

(40

As expectedy= a\ for this system.

After substitution into Eq(10) and some simplification,
we find that

L(s)=s 1—(se sDV2+ s?el4(s)+1s(s)])7 L, (41

where

dz (42

D 72
[4(8)= Jl) exp{—sz—)\(z— ﬁ)

and
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(s JD@ p[ )\[D(w%—l) 5 _r(D)+ 2 0.8 ; .
S)= exg —sz—\{——x———Darcsin — |+ —= «
5 D 2 Z 4D \\\\ '—"l‘]=0‘25
\\\\\\ ............ n=075
\\\\\ ——-n=150
—\/ZZ—DZ} dz (43 086 A

As before,L is then numerically inverted to finally obtain
the lineal-path function of the particle phase. Once again,
this evaluation oL is in excellent agreement with computer
simulations. The mixed-phase lineal-path functidf’(z) is
also easily obtained frorh andL ("), given by

Lineal path function, L(u)
=3
»

o
S

4pDz
|_<1)(z):¢1exp(— P ) (44) S
T 0.0 ' . =
0 1 2 3 4 5

Dimensionless distance, u=z/M,

for overlapping squares. This could be obtained by inserting
Eq. (398) into Eq.(3), or by using the machinery in the theory
of Boolean model$25]. FIG. 5. As in Fig. 3, except with overlapping spheres with log-
normally distributed radii. As the polydispersivity increases, the
lineal-path function becomes longer ranged. Computer simulation

V. EVALUATION OF THE LINEAL-PATH FUNCTION: .
data are represented by the circles.

SPHERES
A. Spheres with a polydispersivity in size 22 4r3
. . . ls(t)=f ——¢(r)dr (50)
We now turn a three-dimensional system of overlapping 3
spheres and consider a Poisson process in space with density
p. At the points of the process we center spheres whose radiind
are independently determined according to some distribution . 3
function ®, so that the reduced density of this system is |7(t):f (rzz— i_z) S(r)dr. (51)
z/2
_ 4pmM,
=3 49 This Laplace transform can then be numerically inverted to

finally obtainL(z). This improves upon the result of Bulin-
We now use the same methodology as above to evaluagkaya and Molchanof39], who considered the behavior of
L(z) for this model, again presenting only the importantL(2z) for overlapping polydispersed spheres under a certain
steps of this procedure. asymptotic limit.

By using an analysis similar to the case of overlapping Graphs of the lineal-path function for overlapping spheres
disks with random sizes, the centers of the intersection rod#ith lognormally distributed radii are shown in Fig. 5. As
along thex axis form a Poisson process with number densitybefore, the lineal-path function is plotted at=0.25, 0.75,

and 1.50. Three separate models are plotted at each of these

N=p7M,, (46) reduced densities, corresponding B=0 (equivalent to
equal-sized spherg9.25, and 0.50. We again see that as the
and the distribution of the rod lengths is polydispersivity increases, the lineal-path function becomes

longer ranged. We also see that our evaluatiori dé in

1 (= X2 excellent agreement with simulation data, represented by the
1—\If(x)=M—2L/2(r2— Z) $(r)dr. @D Gircles. )
As in Eq. (21), L contains two stages of integration for
The mean length of the rods is therefore general®. Unlike the two-dimensional case, however, there
is a common and nontrivial positive-valued distribution func-
4AM4 tion &, so that Eq(49) reduces to a single integral. Ldt
TV (48 have the exponential distribution with rate so that

so thatp=a\ as before. ¢(r)=ce " (52)

Substituting these into Eq10), we find that the Laplace

transform of the lineal-path function is Then the integrals in Eq¢50) and (51) can be calculated

analytically, and the Laplace transfoimreduces to

. % -1
L(s)=sl_(32evfo eXF[—SZ—pW{|5(Z)+|7(Z)}]d2) , [(s)=s‘1—<sze”f ex;{—sz— n[l_e—cﬂZ
(49) °
-1
where —%Ze‘C”Z] dz) . (53
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For this model, the reduced density is »L(2) .
f s dz=L"(0)
8pm o &m
n= CT (54) 3

3,3 OR )
=2e>"mg— 3 —8Re"m,;+ 16R“e"my
This single integral can then be evaluated numerically to

finally obtainL. . _ +4e?"mom,— 12RE"mi+e’m,,  (64)
Finally, as with the previous systems, the mixed-phase
lineal-path functionL(™(z) can be obtained fromL and  where
L™, given by Eq.(3).
2R
_ k
B. Spheres of equal size M fo 2'gs(2)dz. (65

Following Sec. Ill, we now assume that the spheres have.. .
a common radiuf®k. Once again, under this assumption, thepSmce|g8(z)|s1 f(.)r O_s_stR_from I_Eq._(6_3), the space in-
- tegral of Eq.(64) is finite. This again is in contrast to the

Lap_lace transf_orrrL reduces to a _smgle mtegral_ which an phehavior of the two-point cluster functio@,, which be-
be inverted without great numerical effort. This reduction

occurs since

® 0, r<R
(= 1 r=R (59
and, therefore,
M= R, (56)
4p7R3
A=pmR2 (58
2
l—q’(X)Il—W, (59)
and
4R
a= 3. (60)

Substituting these into the general express$#8), we obtain

L(s)=s 1—[se 2Rs+s2e 4(s)] L, (61)
where
o0s)= [ e wag(210z ©2
and
23
gs(s)zexp{—)\<z—ﬁ } (63

The Laplace transform dof for overlapping equal-sized
spheres thus only contains a single integral, and so can be
numerically inverted efficiently to great precision. The
evaluation ofL for this model is again in excellent agree-

comes long-ranged at the percolation threshgld 32], ap-
proximately equal to 0.36 for this syste®7,40.

VI. CHORD-LENGTH DISTRIBUTION FUNCTION

In previous sections we developed expressions for the
Laplace transforms of the particle-phase lineal-path function
for several different systems of overlapping particles. We
will now use these expressions to evaluate the Laplace trans-
form of the particle-phase chord-length distribution function
p(2)=p®(z). Our result is in agreement with the well-
known answer from queueing theory. We then evaluate and
invert the Laplace transform qf(z) for overlapping disks,
squares and spheres.

To begin, we recall thap®)(z) can be obtained from
L®(z) by means of Eq(1). Torquato and Lu used this result
to obtain the void-phase chord-length distribution function
for overlapping polydispersed spheresdimimensiond13]:

p
le*ZPZ, d=1
1
27My
(1) _J T a—2pMyz _
p'(z)= 1« WMZe , d=2 (66)
37M,
—pmMoz —
\ 4M3e , d=3.

We now use the Laplace transform of the lineal-path func-
tion, given by Eq.(10), to obtain the Laplace transform of
p(z), which is

= 1@ .
b(S)=f e *p(z)dz= ——[s?L(s)—sL(0)—L'(0)]

ment with computer simulation results, as shown in Fig. 53nd also

for B=0.

As with the case of overlapping disks,is a short-ranged

function for this system, since the space integrallLofs
finite. To show this, we note that

0 b2
(67)
from Eq. (1). From Hall[30], the mean chord length is
e 1 _ 4,
2 - *2
I& )\ Ny (68)
L'(0)=—pées. (69)

Therefore, we conclude that
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FIG. 7. The chord-length distribution function of fully pen-
etrable disks for phase 2, obtained by numerically differentiating
the graphs of Fig. 6.

FIG. 6. The cumulative distribution function of chord length of
fully penetrable disks for phase 2, definedPgu) = [gp(t)dt, ob-
tained by numerically inverting Eq72).

. smoothing[35,36 and has simple error bounds, producing
dz sharper values at points of discontinuity. Unfortunately, this
' algorithm is also significantly more computationally inten-
(700 sive.
o . o In Fig. 6 we plot the values oP(u), where once again
This is in agreement with the well-known distribution of the u=27z/R is a dimensionless distance, for various values of
busy period in arM/G/< queue[30]. _ 7. By numerically differentiatind®(u), we obtain the chord-
Since the integral in E70) is the same as the integral in |ength distribution function, which is shown in Fig. 7. We
Eq. (10), we can use the results of thg previous three sectiongjearly see that the tail gf(u) lengthens as increases.
to write down the Laplace transform(s) for the various
systems considered in previous sections.

. s w t
p(s)=1+ X—()\fo exr{—sz—)\fo{l—‘l'(x)}dx

B. Overlapping squares

A. Overlapping disks Using the form ofL(s) given by Eq.(41), the Laplace

. . ) transform ofp in Eq. (70) reduces to
For overlapping polydispersed disks, the Laplace trans-

form of p(z) in Eq. (70) becomes A s [Ngpe 592 -1
. p(s)=1+ - s TMla(s)+1s(s)]
" S *
p(s)=l+x—<)\f exp[—sz—Zp{Il(z)+Iz(z)}]dz) (74
0
(71  for overlapping randomly aligned equal-sized squares, where
I, andls were defined by Eqg42) and (43), respectively,
and\ is given by Eq.(38). Again, P(s) can be numerically

inverted to yield the chord-length distribution function for
this system.

in view of Eq. (21). If the disks have a common radiy
then

R s )\(ble*ZRS
p(S)—l+ X_ T

-1
+Al 3(5)) (72
C. Overlapping spheres

from Eq.(32). Recall that ;, | ,, andl ; were defined by Egs. Finally, the Laplace transform offi(z) for overlapping
(22), (23), and(33), respectively, and is given by Eq(17).  polydispersed spheres is
To evaluate the chord-length distribution function for

E3 -1
equal-sized disks, we will numerically invel(s), where p(s)=1+ §_ ( )\f exd —sz—pm{lg(z)+ I7(z)}]dz)
0

z 75
P(z)= f p(t)dt. (73 (79
0 from Eq.(49), wherel g andl; were defined by Eq$50) and

A I . o (51), respectively, and is given by Eq.(46). If the spheres
As we see in Fig. 6, the derivative Bf (that is,p) is infinite have a common radit®, then

atz=2R. This is important because the algorithm used in the
previous sections is subject to the Gibbs effect when applied R s [Npe 2R
to functions with discontinuities. To overcome this problem, p(s)=1+ N —(

we will use a different algorithm by Platzman, Ammons, and

Bartholdi[41] to invert P. This algorithm uses convolution from Eg.(61), wherelg was defined by Eq(62).

-1
+)\I8(s)) (76)
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