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The lineal-path functionL(z) gives the probability of finding a line segment of lengthz entirely in one of the
phases of a disordered multiphase medium. We develop an exact methodology to determineL(z) for the
particle phase of systems of overlapping particles, thus providing a measure of particle clustering in this
prototypical model of continuum percolation. We describe this procedure for systems of overlapping disks and
spheres with a polydispersivity of sizes and for randomly aligned equal-sized overlapping squares. We also
study the effect of polydispersivity on the range of the lineal-path function. We note that the lineal-path
function L(z) is a rigorous lower bound on the two-point cluster functionC2(z), which is not available
analytically for overlapping particle models for spatial dimensiond>2. By evaluating the second derivative of
L(z), we then evaluate the chord-length distribution function for the particle phase. Computer simulations that
we perform are in excellent agreement with our theoretical results.@S1063-651X~96!13310-9#

PACS number~s!: 47.55.Mh, 05.20.2y, 61.20.Gy

I. INTRODUCTION

The quantitative characterization of the microstructure of
two-phase random heterogeneous media, such as suspen-
sions, composites, and porous media, is of great fundamental
as well as practical importance@1–5#. This microstructural
information is ascertained either theoretically or experimen-
tally ~from images of the sample!, with the goal of develop-
ing bounds or estimates on the effective transport, mechani-
cal and electromagnetic properties of the random materials
@1–4,6,7#.

One useful way to characterize the microstructure of ran-
dom media is by means of the lineal-path functionL ( i )(z)
@8,9#, schematically depicted in Fig. 1, and defined to be the
probability that a line segment with a given lengthz lies
entirely in phasei . This microstructural function contains
some connectedness information, at least along a lineal path,
and hence contains certain long-range information about the
system. The lineal-path function has been obtained experi-
mentally for sandstone@10# and magnetic gels@11#. For
three-dimensional systems,L ( i )(z) is also equivalent to the
area fraction of phasei measured from the projected image
of a three-dimensional slice of thicknessz onto a plane@8#, a
quantity of longstanding interest in stereology@12#.

The lineal-path function has also been related to the
chord-length distribution functionp( i )(z) by Torquato and
Lu @13#, which is also illustrated in Fig. 1 and is defined to
be the probability of finding a chord of length betweenz and
z1dz in phasei . They showed that

p~ i !~z!5
l C
~ i !

f i

d2L ~ i !~z!

dz2
, ~1!

where

l C
~ i !5E

0

`

zp~ i !~z!dz ~2!

is the mean chord length for phasei , andf i is the volume
fraction of phasei , so thatf11f251. The chord-length
distribution function is of basic importance in transport prob-
lems involving ‘‘discrete free paths,’’ and thus has an appli-
cation in Knudsen diffusion and radiative transport in porous
media @14–18#. The chord-length distribution function has
also been measured for sandstone@10#, magnetic gels@11#,
and sedimentary rocks@19#. Finally, like the lineal-path
function, the chord-length distribution functionp( i )(z) is of
great interest in stereology@12#.

A useful model of random media is a system of spatially
uncorrelated spheres@1,20–22#. This model goes by a vari-
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FIG. 1. Schematic diagram of~a! the void-phase lineal-path
function, ~b! the particle-phase lineal-path function,~c! the mixed-
phase lineal-path function, and~d! the chord-length distribution
function for the void phase~light lines! and particle phase~dark
lines!.
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ety of names, including fully penetrable spheres, Swiss-
cheese model, and overlapping spheres. In three dimensions,
we will simply refer to this protypical continuum-percolation
model as overlapping spheres. This is an interesting model in
three dimensions because the medium is bicontinuous~that
is, both phases are connected! when the particle volume frac-
tion f2 lies in the interval@0.3,0.97#. A system of overlap-
ping spheres is hence a useful model of consolidated media,
such as sandstones and sintered materials@23#, and has also
been used to model ceramic metals@24# and certain grains
@25#. Interestingly, this system has also been used to study
random crystallization@26#, modeling of porous glasses@27#,
lifetimes of porous catalysts@28#, and bulk polymerization
@29#.

In two dimensions, the material will never be bicontinu-
ous, but the model still captures nontrivial clustering infor-
mation, especially by allowing the particles to have a range
of sizes. Realizations of overlapping disks with a polydisper-
sivity of sizes are shown in Fig. 2. In these two realizations,
f250.528, and the radii are lognormally distributed; see Eq.
~24! for the probability density function of the lognormal
distribution. These models are examples of what the stochas-

tic geometry community callsBoolean models, which have
been extensively studied in the literature@25,30,31#.

In previous work, Lu and Torquato@8,9# evaluated the
void-phase~called phase 1! lineal-path functionL (1)(z) for
overlapping spheres with a polydispersivity of sizes, and
found that

L ~1!~z!5H f1exp~2rz!, d51

f1exp~22rM1z!, d52

f1exp~2rpM2z!, d53,

~3!

where the spheres have number densityr,

Mk5E
0

`

r kf~r !dr ~4!

is thekth moment of the distribution of the radii, andf(r ) is
the probability density function of the radii. Under these as-
sumptions, the volume fraction of phase 1 is

f15e2rV1, ~5!

where

V15
pd/2

G~11d/2!
Md ~6!

is the average volume of the spheres ind dimensions. We
also define

h5rV1 ~7!

to be the reduced density of the system, so thatf15e2h.
The expression forL (1) in Eq. ~3! can be obtained by

using exclusion probabilities @8,9#. One microstructural
function that cannot be obtained by exclusion probabilities is
the two-point cluster functionC2(z) @32#, which is the prob-
ability that two points both lie in the same cluster of con-
nected particles. This probability, as we will discuss in Sec.
II, is known analytically for one-dimensional systems of
overlapping rods of equal size@33,34#, and even if the rods
are assigned random lengths, the Laplace transform ofC2 is
known@30#. However,C2 is not known analytically for over-
lapping spheres in two or more dimensions.

In this paper we obtain the lineal-path function
L(z)[L (2)(z) for theparticle phase~called phase 2! of sys-
tems of overlapping particles, or the probability that a line
segment of lengthz lies entirely within the particle phase.
This is a more difficult problem than obtaining the void-
phase lineal-path function L(1)(z), which can be obtained by
means of simple exclusion probabilities.Also, the particle-
phase lineal-path functionL(z) will capture some level of
information about particle clustering. Clearly,

L~z!<C2~z!, ~8!

i.e., L(z) is a rigorous lower bound onC2(z). For one-
dimensional systems, two points are in the same cluster ex-
actly when the line segment between them lies entirely in a
cluster, and soL(z)5C2(z).

We propose a methodology to numerically evaluate
L(z) for any system of overlapping convex particles. We do

FIG. 2. Realizations of overlapping disks with radii lognormally
distributed, described by the density function in Eq.~24!. These
realizations both have reduced densityh50.75, defined in Eq.~7!.
The upper model satisfiesb50.2, while the lower hasb50.6. The
dark dots are the centers of the disks.
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this by studying the one-dimensional system formed by tak-
ing the intersection of a line placed in the model with the
particles. As we will discuss in Sec. II, the lineal-path func-
tion can be expressedexactlyas a coverage probability for
this one-dimensional system. Such coverage probabilities
have been well studied, and we will use results from this
theory to obtain the Laplace transform of the lineal-path
function. Since this Laplace transform cannot be inverted
analytically, we will use numerical inversion techniques to
finally obtain L(z). We do not use approximations in this
methodology, and the numerical accuracy of this procedure
is only limited by the numerical accuracy of the technique
used to invert Laplace transforms.

Our formulation can be applied to any system of overlap-
ping convex particles, and we will use it to evaluateL(z) for
polydispersed overlapping disks, polydispersed overlapping
spheres, and randomly aligned, equal-sized squares. In all of
these cases, our evaluations ofL(z) are in excellent agree-
ment with values obtained from computer simulations.

In Sec. II we describe the methodology we will use to
evaluate the lineal-path function, which draws on results
from cross sections of Boolean models, coverage probabili-
ties in one dimension, and numerical techniques for inverting
the Laplace transforms of probability distributions. In Sec.
III we use this methodology to evaluateL(z) for overlapping
disks with a polydispersivity in size, including equal-sized
disks. Using the same methodology, we evaluateL(z) for
randomly aligned equal-sized squares in Sec. IV, and then
for polydispersed overlapping spheres in Sec. V. Finally, in
Sec. VI we will use our results forL(z) to evaluate the
chord-length distribution functionp(2)(z) for the previously
mentioned models.

II. DESCRIPTION OF METHODOLOGY

Underlying our methodology to obtain the lineal-path
function are results from stereology, the theory of coverage
processes, and the numerical inversion of Laplace trans-
forms. We first discuss cross sections of a Boolean model.
Roughly speaking, a Boolean model is a system constructed
by placing shapes, randomly chosen from a set of possible
shapes, upon the points of a Poisson process. The intersec-
tion of a line and a Boolean model with convex particles is a
one-dimensional Boolean model containing rods of random
lengths. We then discuss the coverage probability for such
one-dimensional systems of polydispersed rods. As dis-
cussed in Sec. I, the lineal-path function is essentially this
probability, and its Laplace transform is known. However,
this Laplace transform cannot be inverted analytically in
general. To overcome this obstacle, we finally discuss meth-
ods that numerically invert Laplace transforms of probability
distribution functions.

A. Cross sections of Boolean models

Many theoretical results of Boolean models have been
obtained@30,31#. One important property is that cross sec-
tions of a Boolean model are lower-dimensional Boolean
models. For example, consider a line that placed inside a
system of overlapping particles; without loss of generality,
the line can be taken to be thex axis. Then the regions of

intersection of the particles with this line form a one-
dimensional Boolean model. If the particles are all convex,
then these regions are connected and we call these regions of
intersection ‘‘rods.’’ Of course, these rods have random
lengths. The parameters of this one-dimensional system of
overlapping rods — the distribution of lengths and the den-
sity of the rods — can be determined from the properties of
the ‘‘parent’’ system of overlapping particles.

We now make an important observation: for systems of
overlapping convex particles~which will be exclusively con-
sidered in this paper!, the probability that an interval of
lengthz lies completely within the particle phase is equal to
the probability that the interval@0,z# on thex axis is com-
pletely covered by the rods. In order to evaluate the lineal-
path functionL(z), therefore, we will use a result from the
theory of coverage processes.

B. Coverage probabilities in one dimension

Consider a stationary Poisson process$Ci% on the line
with density l. To construct a one-dimensional Boolean
model, we center rods of random length on these points. We
assume both that these lengthsDi are independent of each
other and the centers, and that the lengths are identically
distributed with some distribution functionC, so that

P~Di<x!5C~x! ~9!

for all i . Both of these conditions are true of the system of
intersection rods described above.

Stochastic geometers have studied the probability that a
given interval of lengtht is completely covered by these
randomly sized rods. For this one-dimensional process, this
coverage probability is equivalent to the two-point cluster
function C2(z) and the one-dimensional particle-phase
lineal-path functionL(z), as discussed in Sec. I. The Laplace
transform ofL is known, and is given by@30#

L̂~s!5E
0

`

e2szL~z!dt

5s212S s2ealE
0

`

expF2sz

2lE
0

z

$12C~x!%dxGdzD 21

, ~10!

where

a5E
0

`

@12C~x!#dx ~11!

is the mean length of the rods.
In principle, one can invert Eq.~10!, and therefore obtain

the coverage probabilityL. For example, if the rods all have
common lengthD, and the interval distance satisfies
(m21)D<z<mD for integralm, then@30,33#
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L~u!511 (
k51

m

~21!ke2khS @h~u2k11!#k21

~k21!!

1
@h~u2k11!#k

k! D , ~12!

whereu5z/D is dimensionless distance, and

h5lD ~13!

is the reduced density of the system. Expression~12! was
independently obtained by C¸ inlar and Torquato@34# using
renewal theory.

If the rods have a nontrivial distribution of lengths, how-
ever, L(z) unfortunately cannot be analytically obtained
from L̂(s) in general. Therefore, we must use numerical
techniques to obtain the lineal-path function.

C. Numerical inversion of Laplace transforms

We will use two different short algorithms discovered by
Abate and Whitt, using the Fourier-series method@35,36#,
which numerically calculates any functionf from its Laplace
transform f̂ . The only conditions that must be met for these
algorithms to work are thatu f (z)u,1 and thatf̂ (s) can be
evaluated at any points in the complex plane.~These authors
have also developed numerical techniques for inverting
Laplace transforms of other functions@35#!. In our case,L is
a cumulative probability function, and, since we have an
explicit formula for its transform via Eq.~10! and the distri-
bution functionC, therefore we can use their numerical
methods to invertL̂.

These algorithms unfortunately do not have simple gen-
eral error bounds. To ensure numerical accuracy, Abate and
Whitt suggest that the two methods be used separately and
checked for agreement within desired precision. In our case,
we have a third method of checking the computation of the
lineal-path function, namely, direct Monte Carlo simulation.
To ensure that these algorithms converge, they recommend
that double precision floating-point numbers should be used.
Unfortunately, expression~10! contains two levels of inte-
gration, and therefore numerically evaluatingL̂(s) to that
degree of precision is extremely computationally intensive.
From our experience, evaluatingL̂(s) to 10 or 11 decimal
places will produce values ofL(z) accurate to roughly three
or four decimal places.

III. EVALUATION OF THE LINEAL-PATH FUNCTION:
DISKS

We now employ the methodology described in Sec. II to
evaluate the particle-phase lineal-path function of systems of
overlapping convex particles. We begin by considering over-
lapping disks with a polydispersivity of sizes. We use the
ideas of stereology to determine both the densityl of the
intersection rods along thex axis and the distributionC of
the lengths of the rods. Using this information, we calculate
the Laplace transform of the lineal-path function using Eq.
~10!. Finally, the techniques of Abate and Whitt are em-
ployed to obtain the lineal-path function numerically. This
derivation is described in some detail for this model; we will

perform similar derivations ofL(z) in the next two sections
for other systems of overlapping particles.

A. Disks with a polydispersivity in size

1. Parameters of the intersection rods

We now mathematically model a system of overlapping
disks with a polydispersivity of sizes. We assume that the
centers of the disks (Xi ,Yi) are generated by a Poisson pro-
cess in the plane with known densityr, and that the radii
Ri are independently determined by some distribution func-
tion F, so that

P~Ri<r !5F~r !5E
0

r

f~ t !dt ~14!

for all i . Then the triplets (Xi ,Yi ,Ri) form a nonstationary
Poisson process with mean measure

m~dx,dy,dr !5r dx dyf~r !dr. ~15!

Clearly theYi give the distance of the centers from thex
axis.

We now consider the rods which are generated by the
intersection of the disks with thex axis. The pairs (Ci ,Di) of
the centers and lengths of the rods are determined by the
positions and radii of the disks through the relation

~Ci ,Di !5H ~Xi ,2ARi
22Yi

2!, uYi u<Ri

~],0! otherwise.
~16!

By ] we mean a point off of the line~the ‘‘point at infin-
ity’’ !, since a disk withuYi u.Ri does not intersect the line.

From this relation, we see that the centers of these rods
form a stationary Poisson process with mean

l5rE
0

`E
2r

r

dyf~r !dr52rM1 , ~17!

whereMk is the uncentralizedkth moment of the distribution
F defined by Eq.~4!. Also, the probability that a given rod
has length greater thanx is

12C~x!5P~ uyu,Ar 22x2/4,r.x/2ur.uyu!

5
1

M1
E
x/2

`
Ar 22 l 2/4f~r !dr. ~18!

Therefore, using Eq.~11!, the mean length of the rods on the
line is

a5
pM2

2M1
. ~19!

From this analysis, we notice

al5rpM25h, ~20!

whereh is the reduced density of the disks from Eq.~7!.
This result is expected, since the probability that a point on
thex axis lies in a rod must be equal to the probability that a
point in the original two-dimensional system lies in a disk.
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2. Evaluation of lineal-path function

We now substitute Eqs.~17!–~19! into Eq. ~10! to obtain
the Laplace transform ofL for this system. After reversing
the order of integration in the exponent and some simplifi-
cation, we obtain

L̂~s!5s212S s2ehE
0

`

exp@2sz22r$I 1~z!1I 2~z!%#dzD 21

,

~21!

where

I 1~z!5
p

2E0
z/2

r 2f~r !dr ~22!

and

I 2~z!5E
z/2

` H zA4r 22z2

4
1r 2arcsinS z

2r D J f~r !dr. ~23!

As discussed in Sec. III A 1,L̂ cannot be inverted analyti-
cally, so instead we use the techniques of Abate and Whitt to
obtainL(t) numerically. However, evaluation ofL̂ requires
two stages of integration, and so obtainingL̂ to 11 places of
precision can be quite computationally expensive, depending
on the behavior ofF.

Graphs of the lineal-path function for overlapping disks
with lognormally distributed radii are shown in Fig. 3; that
is, the probability density function of the radii is given by

f~r !5
1

rbA2p
expH 2

@ ln~r /R0!#
2

2b2 J , ~24!

whereR0 andb are given parameters. For this distribution,
the uncentralizedkth moments of the distribution of the radii
are

Mk5R0
kexp~k2b2/2!. ~25!

We see that asf(r )→d(r2R0) asb→0; that is, the radii of
all the disks approachesR0. However, the polydispersivity of
the radii increases asb increases.

The lineal-path function is plotted in Fig. 3 ath50.25,
0.75, and 1.50. Three separate models are plotted at each of
these reduced densities, corresponding tob50 ~equivalent
to equal-sized disks, discussed below!, b50.25 and 0.50.
We see that as the polydispersivity increases~i.e., asb in-
creases!, the lineal-path function becomes longer-ranged. We
also see that our evaluation ofL is in excellent agreement
with simulation data, represented by the circles.

B. Disks of equal size

The expression for the Laplace transform ofL in Eq. ~21!
is valid for any distributionF of the disk radii. If we assume
that the disks have equal sizeR, that is, if

F~r !5H 0, r,R

1, r>R,
~26!

then Eq.~21! is greatly simplified. Substitution into Eqs.~4!,
~7!, and~17!–~19! yields

Mk5Rk for all k, ~27!

h5rpR2, ~28!

l52rR, ~29!

12C~x!5H AR22x2/4

R
, x,2R

0 otherwise,

~30!

and

a5
pR

2
. ~31!

Substituting these expressions into Eq.~21!, we find that the
Laplace transform ofL for overlapping equal-sized disks is

L̂~s!5s212@se22Rs1s2ehI 3~s!#21, ~32!

where

I 3~s!5E
0

2R

e2szg3~z!dz ~33!

and

g3~z!5expF2
l

4R H zA4R22z214R2arcsinS z

2RD J G .
~34!

FIG. 3. Graphs of the particle-phase lineal-path functionL(u),
whereu5z/M1 is the dimensionless distance. The materials con-
sidered are overlapping disks with lognormally distributed radii at
reduced densitiesh50.25, 0.75, and 1.50. Three separate models
are plotted at each of these reduced densities, corresponding to
b50 ~equivalent to equal-sized disks!, b50.25 and 0.50. Asb and
the polydispersivity increases, the lineal-path function becomes
longer ranged. Computer simulation data are represented by the
circles.
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We see thatL̂, for this system, contains only a single inte-
gral, and so the evaluation and numerical inversion ofL̂ can
be done much more quickly and accurately than the polydis-
persed case.

Graphs of the lineal-path function for equal-sized spheres
are shown in Fig. 3 for the caseb50. As we see, theory and
simulation are in excellent agreement.

From the void-phase lineal-path functionL (1)(z), given
by Eq. ~3!, and the particle-phase lineal-path function
L(z)[L (2)(z), we can easily obtain the mixed-phase lineal-
path function, given by

L ~m!~z!512L ~1!~z!2L ~2!~z!, ~35!

and defined to be the probability that a line segment of length
z crosses phases at least once over its length. In Fig. 4 we
plot L (m)(z) for equal-sized disks at various reduced densi-
ties. We notice thatL (m)(z) is an increasing function ofz, as
expected, since the probability of a line crossing phases at
least once increases as the length of the line increases. We
also see thatL (m)(z) is maximized in h for all z at
hm'0.9.

We also notice from Eq.~32! that the lineal-path function
is a ‘‘short-ranged’’ function at all densitiesh, in the sense
that thevolumeintegral of the lineal path function is finite.
To show this, we notice that

E L~z!

2p
dz5E

0

`

zL~z!dz

52L̂8~0!

52R21e2hS E
0

2R

g3~z!dzD 2
1ehE

0

2R

zg3~z!dz24ehRE
0

2R

g3~z!dz,

~36!

which clearly is finite sinceug3(z)u<1 for 0<z<2R from
Eq. ~34!. By contrast, the two-point cluster functionC2(z) is

a long-ranged function~that is, its volume integral diverges!
for densitiesh above the percolation thresholdhc @32#, de-
fined to be the density at which a cluster of infinite size
forms. For overlapping equal-sized disks,hc'1.13 @37,38#.
This observation is not surprising, sinceL(z)<C2(z), as re-
marked in Sec. I, and so the divergent behavior ofC2(z)
near the percolation threshold is not necessarily reflected in
the behavior ofL(z).

IV. EVALUATION OF THE LINEAL-PATH FUNCTION:
SQUARES

This three-step method of evaluatingL—stereology, cov-
erage processes, and numerical evaluation — can be used for
other systems of overlapping convex particles. We now con-
sider overlapping squares of densityr of equal side length
D but random alignment, so that the reduced density of this
model is

h5rD2. ~37!

We now use the same procedure as above to obtainL, but we
only summarize the steps of this evaluation.

To begin, we again consider the intersection rods of the
squares with thex axis; as before, this is a system of over-
lapping rods with random lengths. We again must calculate
the density of the rods and the distribution of their lengths,
but these calculations for squares require considerably more
effort than the disk case. We find that

l5
4rD

p
~38!

and

12C~x!55
12

x

2D
, x<D

x222DAx22D2

2xD
, D<x<DA2

0 otherwise,

~39!

so that, from Eq.~11!,

a5
pD

4
. ~40!

As expected,h5al for this system.
After substitution into Eq.~10! and some simplification,

we find that

L̂~s!5s212„se2sDA21s2eh@ I 4~s!1I 5~s!#…21, ~41!

where

I 4~s!5E
0

D

expF2sz2lS z2
z2

4D D Gdz ~42!

and

FIG. 4. Graphs of the mixed-phase lineal-path function for over-
lapping equal-sized disks.L (m)(u) is a decreasing function inu for
all h, and is maximized for allu at hm'0.90.
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I 5~s!5E
D

DA2
expF2sz2lHD~p11!

2
2DarcsinSDz D1

z2

4D

2Az22D2J Gdz. ~43!

As before,L̂ is then numerically inverted to finally obtain
the lineal-path function of the particle phase. Once again,
this evaluation ofL is in excellent agreement with computer
simulations. The mixed-phase lineal-path functionL (m)(z) is
also easily obtained fromL andL (1), given by

L ~1!~z!5f1expS 2
4rDz

p D ~44!

for overlapping squares. This could be obtained by inserting
Eq. ~38! into Eq.~3!, or by using the machinery in the theory
of Boolean models@25#.

V. EVALUATION OF THE LINEAL-PATH FUNCTION:
SPHERES

A. Spheres with a polydispersivity in size

We now turn a three-dimensional system of overlapping
spheres and consider a Poisson process in space with density
r. At the points of the process we center spheres whose radii
are independently determined according to some distribution
functionF, so that the reduced density of this system is

h5
4rpM3

3
. ~45!

We now use the same methodology as above to evaluate
L(z) for this model, again presenting only the important
steps of this procedure.

By using an analysis similar to the case of overlapping
disks with random sizes, the centers of the intersection rods
along thex axis form a Poisson process with number density

l5rpM2 , ~46!

and the distribution of the rod lengths is

12C~x!5
1

M2
E
x/2

` S r 22 x2

4 Df~r !dr. ~47!

The mean length of the rods is therefore

a5
4M3

3M2
, ~48!

so thath5al as before.
Substituting these into Eq.~10!, we find that the Laplace

transform of the lineal-path function is

L̂~s!5s212S s2ehE
0

`

exp@2sz2rp$I 6~z!1I 7~z!%#dzD 21

,

~49!

where

I 6~ t !5E
0

z/2 4r 3

3
f~r !dr ~50!

and

I 7~ t !5E
z/2

` S r 2z2
z3

12Df~r !dr. ~51!

This Laplace transform can then be numerically inverted to
finally obtainL(z). This improves upon the result of Bulin-
skaya and Molchanov@39#, who considered the behavior of
L(z) for overlapping polydispersed spheres under a certain
asymptotic limit.

Graphs of the lineal-path function for overlapping spheres
with lognormally distributed radii are shown in Fig. 5. As
before, the lineal-path function is plotted ath50.25, 0.75,
and 1.50. Three separate models are plotted at each of these
reduced densities, corresponding tob50 ~equivalent to
equal-sized spheres!, 0.25, and 0.50. We again see that as the
polydispersivity increases, the lineal-path function becomes
longer ranged. We also see that our evaluation ofL is in
excellent agreement with simulation data, represented by the
circles.

As in Eq. ~21!, L̂ contains two stages of integration for
generalF. Unlike the two-dimensional case, however, there
is a common and nontrivial positive-valued distribution func-
tion F, so that Eq.~49! reduces to a single integral. LetF
have the exponential distribution with ratec, so that

f~r !5ce2cr. ~52!

Then the integrals in Eqs.~50! and ~51! can be calculated
analytically, and the Laplace transformL̂ reduces to

L̂~s!5s212S s2ehE
0

`

expF2sz2hH 12e2cz/2

2
cz

4
e2cz/2J GdzD 21

. ~53!

FIG. 5. As in Fig. 3, except with overlapping spheres with log-
normally distributed radii. As the polydispersivity increases, the
lineal-path function becomes longer ranged. Computer simulation
data are represented by the circles.
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For this model, the reduced density is

h5
8rp

c3
. ~54!

This single integral can then be evaluated numerically to
finally obtainL.

Finally, as with the previous systems, the mixed-phase
lineal-path functionL (m)(z) can be obtained fromL and
L (1), given by Eq.~3!.

B. Spheres of equal size

Following Sec. III, we now assume that the spheres have
a common radiusR. Once again, under this assumption, the
Laplace transformL̂ reduces to a single integral which can
be inverted without great numerical effort. This reduction
occurs since

F~r !5H 0, r,R

1, r>R,
~55!

and, therefore,

Mk5Rk, ~56!

h5
4rpR3

3
, ~57!

l5rpR2, ~58!

12C~x!512
x2

4R2 , ~59!

and

a5
4R

3
. ~60!

Substituting these into the general expression~49!, we obtain

L̂~s!5s212@se22Rs1s2ehI 8~s!#21, ~61!

where

I 8~s!5E
0

2R

e2szg8~z!dz ~62!

and

g8~s!5expF2lS z2
z3

12R2D G . ~63!

The Laplace transform ofL for overlapping equal-sized
spheres thus only contains a single integral, and so can be
numerically inverted efficiently to great precision. The
evaluation ofL for this model is again in excellent agree-
ment with computer simulation results, as shown in Fig. 5
for b50.

As with the case of overlapping disks,L is a short-ranged
function for this system, since the space integral ofL is
finite. To show this, we note that

E
0

`L~z!

4p
dz5L̂9~0!

52e3hm0
32

8R3

3
28Rehm1116R2ehm0

14e2hm0m1212Re2hm0
21ehm2 , ~64!

where

mk5E
0

2R

zkg8~z!dz. ~65!

Sinceug8(z)u<1 for 0<z<2R from Eq. ~63!, the space in-
tegral of Eq.~64! is finite. This again is in contrast to the
behavior of the two-point cluster functionC2, which be-
comes long-ranged at the percolation thresholdhc @32#, ap-
proximately equal to 0.36 for this system@37,40#.

VI. CHORD-LENGTH DISTRIBUTION FUNCTION

In previous sections we developed expressions for the
Laplace transforms of the particle-phase lineal-path function
for several different systems of overlapping particles. We
will now use these expressions to evaluate the Laplace trans-
form of the particle-phase chord-length distribution function
p(z)[p(2)(z). Our result is in agreement with the well-
known answer from queueing theory. We then evaluate and
invert the Laplace transform ofp(z) for overlapping disks,
squares and spheres.

To begin, we recall thatp( i )(z) can be obtained from
L ( i )(z) by means of Eq.~1!. Torquato and Lu used this result
to obtain the void-phase chord-length distribution function
for overlapping polydispersed spheres ind dimensions@13#:

p~1!~z!55
h

M1
e22rz, d51

2hM1

pM2
e22rM1z, d52

3hM2

4M3
e2rpM2z, d53.

~66!

We now use the Laplace transform of the lineal-path func-
tion, given by Eq.~10!, to obtain the Laplace transform of
p(z), which is

p̂~s!5E
0

`

e2szp~z!dz5
l C
~2!

f2
@s2L̂~s!2sL~0!2L8~0!#

~67!

from Eq. ~1!. From Hall @30#, the mean chord length is

l C
~2!5

eal21

l
5

f2

lf1
, ~68!

and also

L8~0!52rf1 . ~69!

Therefore, we conclude that
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p̂~s!511
s

l
2S lE

0

`

expF2sz2lE
0

t

$12C~x!%dxGdzD 21

.

~70!

This is in agreement with the well-known distribution of the
busy period in anM /G/` queue@30#.

Since the integral in Eq.~70! is the same as the integral in
Eq. ~10!, we can use the results of the previous three sections
to write down the Laplace transformsp̂(s) for the various
systems considered in previous sections.

A. Overlapping disks

For overlapping polydispersed disks, the Laplace trans-
form of p(z) in Eq. ~70! becomes

p̂~s!511
s

l
2S lE

0

`

exp@2sz22r$I 1~z!1I 2~z!%#dzD 21

~71!

in view of Eq. ~21!. If the disks have a common radiusR,
then

p̂~s!511
s

l
2S lf1e

22Rs

s
1lI 3~s! D 21

~72!

from Eq.~32!. Recall thatI 1, I 2, andI 3 were defined by Eqs.
~22!, ~23!, and~33!, respectively, andl is given by Eq.~17!.

To evaluate the chord-length distribution function for
equal-sized disks, we will numerically invertP̂(s), where

P~z!5E
0

z

p~ t !dt. ~73!

As we see in Fig. 6, the derivative ofP ~that is,p) is infinite
atz52R. This is important because the algorithm used in the
previous sections is subject to the Gibbs effect when applied
to functions with discontinuities. To overcome this problem,
we will use a different algorithm by Platzman, Ammons, and
Bartholdi @41# to invert P̂. This algorithm uses convolution

smoothing@35,36# and has simple error bounds, producing
sharper values at points of discontinuity. Unfortunately, this
algorithm is also significantly more computationally inten-
sive.

In Fig. 6 we plot the values ofP(u), where once again
u5z/R is a dimensionless distance, for various values of
h. By numerically differentiatingP(u), we obtain the chord-
length distribution function, which is shown in Fig. 7. We
clearly see that the tail ofp(u) lengthens ash increases.

B. Overlapping squares

Using the form ofL̂(s) given by Eq.~41!, the Laplace
transform ofp in Eq. ~70! reduces to

p̂~s!511
s

l
2S lf1e

2sdA2

s
1l@ I 4~s!1I 5~s!# D 21

~74!

for overlapping randomly aligned equal-sized squares, where
I 4 and I 5 were defined by Eqs.~42! and ~43!, respectively,
andl is given by Eq.~38!. Again, P̂(s) can be numerically
inverted to yield the chord-length distribution function for
this system.

C. Overlapping spheres

Finally, the Laplace transform ofp(z) for overlapping
polydispersed spheres is

p̂~s!511
s

l
2S lE

0

`

exp@2sz2rp$I 6~z!1I 7~z!%#dzD 21

~75!

from Eq.~49!, whereI 6 andI 7 were defined by Eqs.~50! and
~51!, respectively, andl is given by Eq.~46!. If the spheres
have a common radiusR, then

p̂~s!511
s

l
2S lf1e

22Rs

s
1lI 8~s! D 21

~76!

from Eq. ~61!, whereI 8 was defined by Eq.~62!.

FIG. 6. The cumulative distribution function of chord length of
fully penetrable disks for phase 2, defined byP(u)5*0

up(t)dt, ob-
tained by numerically inverting Eq.~72!.

FIG. 7. The chord-length distribution function of fully pen-
etrable disks for phase 2, obtained by numerically differentiating
the graphs of Fig. 6.
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